EC 3210 Solutions

©John P. Powers, All rights reserved. 1992, 1998.

Assignment 6

5.1 Suppose a resonator is made up of two mirrors with radii of curvature equal to 0.5 m and 1 m respectively. Calculate the range of mirror separations L that will provide stable operation. (Include the separations that will provide marginal stability.)

The g parameters are

$$g_1 = 1 - \frac{L}{r_1} = 1 - \frac{L}{0.5} = 1 - 2L$$
 (1a)

and

$$g_2 = 1 - \frac{L}{r_2} = 1 - \frac{L}{1.0} = 1 - L.$$
 (1b)

The product g_1g_2 is

$$g_1g_2 = (1 - 2L)(1 - L)$$
. (1c)

Looking at the plot of g_1g_2 vs. L in Fig. 1, we can identify the regions where g_1g_2 is between 0 and 1. We see that we want

$$0 \le L \le 0.5 \tag{2a}$$

and

$$1 < L < 1.5$$
. (2b)

There are two separated regions of mirror spacing that will provide stable operation.

- ${f 5.2}$ Considering the rectangular and circular mode patterns shown in the text, \dots
- a. . . . sketch the patterns expected for the TEM_{22} , TEM_{14} , and the TEM_{23} rectangular modes.
- b. Repeat part (a) for circular modes.
- a. For rectangular geometry, we have one more in the x-direction and y-direction than the index value. See Fig. 2.
- b. For a TEM_{mn} circular mode we will have m+1 peaks (with one on the center point) along 2n radial lines, as seen in Fig. 3. Note: I have added the TEM_{24} as well.
- **6.1.** Calculate the Doppler-broadened linewidth of the HeNe 1.15 μ m transition. Assume that the gas discharge equilibrium temperature is approximately 350K.

We want to calculate the Doppler-broadened linewidth of the HeNe 1.15 μm transition for T=350 K.

Figure 1: Problem 5.1. Plot of g_1g_2 vs. L.

Figure 2: Rectangular mode patterns for Problem 5.2a.

We begin by calculating the center frequency.

$$\nu_0 = \frac{c}{\lambda} = \frac{3.0 \times 10^8}{1.15 \times 10^{-6}} = 2.61 \times 10^{14} \text{ Hz}.$$
(3)

Now we need to find kT. We know that kT = 1/40 eV for T = 300K, so, at T = 350K, we have

$$kT_{350} = (kT)_{300} \left(\frac{350}{300}\right) = \left(\frac{1}{40}\right) \left(\frac{350}{300}\right) = 2.92 \times 10^{-2} \text{ eV}.$$
 (4)

Next, we need to find Mc^2 for neon. (Neon is the lasing species in the helium and neon mixture. The helium is in the mixture only to pump the neon by a collision process; it does not lase.)

$$M(\text{neon}) = 20 \tag{5a}$$

$$Mc^2 = (20)(1 \times 10^9) = 20 \times 10^9 \text{ eV}.$$
 (5b)

Figure 3: Circular mode patterns for Problem 5.2b.

Hence, we have

$$\frac{kT}{Mc^2} = \frac{2.92 \times 10^{-2}}{20 \times 10^9} = 1.458 \times 10^{-12} \,. \tag{5c}$$

The frequency linewidth $\Delta \nu$ is then found from

$$\Delta\nu_{\text{Doppler}} = \nu_0 \sqrt{\frac{8(\ln 2)(kT)}{Mc^2}} = (2.61 \times 10^{14}) \sqrt{8(\ln 2)(1.458 \times 10^{-12})} = 7.42 \times 10^8 = 74.2 \text{ GHz}.$$
(5d)

- **6.2.** Consider a three-level ruby laser ($\lambda = 694$ nm). The lifetimes of the upper and middle levels are 50 ns and 3 ms, respectively.
- a. What is the lifetime of the lowest level?

- b. Calculate the frequency linewidth $\Delta \nu$ of the lifetime-broadened lineshape, $g(\nu)$.
- c. Using a computer, plot $g(\nu)$.

We want to find the lifetime broadened Lorentzian curve for a three-level ruby laser ($\lambda = 694 \times 10^{-9}$ m) with $\tau_2 = 50$ ns and $\tau_1 = 3$ ms.

a. The lifetime of the lowest energy level (the ground state) is infinity;

$$\tau_0 = \infty \,. \tag{6a}$$

b. The linewidth is

$$\Delta \nu = \frac{1}{\pi} \left(\frac{1}{\tau_1} + \frac{1}{\tau_0} \right) = \frac{1}{\pi} \left(\frac{1}{3 \times 10^{-3}} + \frac{1}{\infty} \right) = 106.1 \text{ Hz}.$$
 (6b)

c. The center frequency of the line is

$$\nu_0 = \frac{c}{\lambda} = \frac{3 \times 10^8}{694 \times 10^{-9}} = 4,32 \times 10^{14} \,. \tag{6c}$$

The graph of the Lorentzian lineshape is shown in Fig. 4.

Figure 4: Lorentzian lineshape ($\nu_0 = 4.32 \times 10^{14} \text{ Hz}$) for Problem 6.2.